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Motivation & Needs

Powder-based AM produces non-uniform microstructures

• Process parameters define the evolution of the microstructure

• Significantly different from conventional manufacturing

• Columnar grains are widely reported 

• Grain size and shape variations

• Conventional crystal plasticity constitutive models are not feature size dependent

Microstructure comparison, Courtesy Dr. R. Fonda, NRL



Develop a data-driven statistical surrogate to capture the mechanical behavior

• Utilize synthetic microstructures and image segmentation techniques

Determine process-property correlations

• Generate data relating synthetic microstructure features to constitutive behavior

• Relate process parameters to microstructure features

P = 400 W, v = 2,000 mm/sP = 370 W, v = 900 mm/sP = 40 W, v = 100 mm/s

Motivation & Needs
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Microstructure Synthesis

Continuum diffuse interface model for simulating grain evolution

• Generative capability between fidelity of statistical methods (Monte Carlo) and cellular automaton

• Extended to 3D with aspect ratio controls

• Ability to generate realistic single track AM microstructures with columnar grains

• Randomly placed seed points grow based on physics based evolution

• Result is a matrix with each (i, j, k) location containing a grain label from 1 to N

Increasing aspect ratio
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Microstructure Segmentation

Matrix data is converted into a bitmapped voxel image

• Automatically imported into Simpleware ScanIP using Simpleware Scripting interface 

• Each grain is segmented based on assigned grain labels using a single multi-label mask

• Generation of a surface representation of each grain in the RVE

• Surface representations can be used for structured or unstructured FE mesh generation

• Structure representation uses hexahedral elements but has a “stair-stepping” effect

• Unstructured representation uses tetrahedral elements but is smooth and can capture much finer details

Unstructured Grain Surfaces Structured Grain Surfaces
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Finite Element Discretization

Microstructure grain surfaces converted to FE mesh

• Curved quadratic tetrahedral elements generated with 

Simpleware’s +FE Free algorithm

• Varied element density based on geometry

• Decimation used to reduce size of the mesh

• Exported to Abaqus/Standard *inp file

• Abaqus 10 noded tetrahedral elements (C3D10)

• FE model parameters

• Crystal plasticity model implemented via user subroutine (UMAT)

• Parameters of 316L stainless steel

• Periodic boundary conditions on all external faces

• Displacement driven to obtain ~10% nominal strain
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What is the optimal mesh resolution and number of 

grains to minimize simulation time?

• Unstructured mesh

• Too few – inaccurate results

• Too many – long simulation times

• Number of grains

• Too many – difficult to mesh and simulation

• Too few – statistics are not representative



Mesh and Grain Variations

Vary mesh and number of grain simultaneously

• Start from a converged baseline

• ~300 grains, ~300k nodes, ~250k elements

• Simulation time of ~80 hours on DOD HPC system

• Vary grains from 30 to 600

• Scale RVE so that mean/median grain size is constant

• Vary mesh from 75k – 1.5M nodes and 50k – 1M elements
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Use ESD and effective aspect ratio to determine 

equivalence

• ESD shows no significant differences

• Aspect ratio shows only 30 grain cases differ in 

distribution



Mesh and Grain Variations

Stress-Strain used to determine RVE equivalence

• 30 grain case shows significant differences

• All other cases show no statistically significant 

differences

• Max discrepancy of 15 MPa

• Simulation time increased exponentially as 

node/elements increased

• Number of grains has a small effect on simulation time but 

not significant

• New baseline case for data driven modeling

• 100 grains, 200-250k nodes, and 150-200k elements

• 10-15hr simulation time – reduced to 1/8th original time

• Not significant difference in mechanical results
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Data Driven Surrogate Modeling

Typically 1 RVE → 1 stress-strain plot

• 10+ hour simulation time is still relatively long

• Data driven models need 100’s or 1000’s of points
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To increase data, each grain produces 

1 stress-strain plot

• Increase data 100x

• Assume boundary and grain interaction 

effects small

Data Generation

• Use Latin Hypercube based design of experiments

• Vary grain shape/aspect ratio and size

• 50 RVEs generated (CDIM) and meshed (ScanIP)

• 1 case with a = b = c

• 22 cases with a = b < c

• 27 cases with a < b < c

• Size varied by linear scaling of RVEs



Data Driven Surrogate Modeling

Recognize that the FE method is displacement driven

• Strain and stress are uniform when plotted against the commanded displacement

• Strain can be represented by a function of displacement and fixed parameters

• Stress depends on the displacement, fixed parameters, as well as strain

• Need to determine two functional outputs

• Both can be observed

• One depends on the other
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𝝈 𝒖 = 𝒈 𝜺 𝒖 , 𝒖, 𝜽

𝜺 𝒖 = 𝒇 𝒖, 𝜽



Data Driven Surrogate Modeling

Methodology

• Input: Known grain morphology (experiments, phase field, CA, etc.), constitutive model 

parameters, displacement

• Output 1: Predict strain from inputs

• Output 2: Predict stress from inputs and predicted strain

• Final: Combine outputs to predict stress-strain behavior
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Functional Gaussian Process Regression

Gaussian Process Regression

• Want to solve the problem of

• By assuming the function follows 

• With mean, µ, and covariance, K

• Squared exponential or Gaussian kernel for covariance
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Functional Gaussian Process Regression

Gaussian Process Regression

• Want to solve the problem of

• By assuming the function follows 

• With mean, µ, and covariance, K

• Squared exponential or Gaussian kernel for covariance

Functional Gaussian Process Regression

• Want to solve the problem of

• Both Y and X are functions of another variable 

(time, displacement, etc.)

• The kernel is now a product of two kernels

• Gaussian kernel for scalar parameters

• Non-parametric functional data analysis is 

used to define a distance in functional space 

(semi-metric distance)

• Squared exponential or Gaussian kernel for 

covariance
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Wang, Bo, and Aiping Xu. "Gaussian process methods for nonparametric functional regression 

with mixed predictors." Computational Statistics & Data Analysis 131 (2019): 80-90.



Functional GP – Demonstration

Demonstration

• Predicted (black) matches true response (blue)

• Larger error bounds for input values (red) that have a lot of noise

14U.S. Naval Research Laboratory |  Distribution A: Approved for public release, distribution is unlimited.



fGP Network Predictions
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MSE MAPE MAE

Strain 4.388e-5 9.13% 4.203e-3

Stress 1756.9 5.68% 21.51

Performance

• Network is trained on the 50 RVE data sets

• 70% used for training, 30% withheld

• Performance on withheld data is under 10% error

• Mean behavior is almost indistinguishable 

between CPFE and fGP



fGP Network Predictions
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MSE MAPE MAE

Strain 4.388e-5 9.13% 4.203e-3

Stress 1756.9 5.68% 21.51

Performance

• Network is trained on the 50 RVE data sets

• 70% used for training, 30% withheld

• Performance on withheld data is under 10% error

• Mean behavior is almost indistinguishable 

between CPFE and fGP

• Many individual grains are predicted well

• Grains with strains far above/below 10% strain are 

generally not predicted well



Prediction On New Data
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MSE MAPE MAE

Strain 6.41e-5 11.2% 0.0052

Stress 7076.6 8.44% 41.2

New 300 Grain RVEs

• Previous RVEs contain 100 grains

• Generate new RVEs in the same manner with

300 grains

• Closer to what is normally done in CPFE

• Test how the fGP network scales up

Performance

• Without retraining, the fGP network performs similar to the previous performance

• Highest errors in equiaxial case

• Demonstrates ability to scale up to much larger microstructures than those used in training

• EBSD or physical simulations can yield microstructures with 1000s of grains

• To costly to simulate with CPFE, easily approximated with fGP network



Cellular Automaton Data
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Cellular Automaton Finite Element (CAFE) Model

• High fidelity than CDIM

• Still less expensive than phase field models

• Further modified for computational efficiency with AM microstructures

• Solidification time scale is independent of temperature time steps

• Predictions used in neighbors of current voxel

• Determination of active regions for improved CPU utilization

• Simulation of epitaxial growth from the base plate 

• 3 tracks with many layers

Finite Element Model

• Extracted randomly from full CA 

model

• Contains ~300 grains again

• Segmented and meshed using 

ScanIP as before

• CPFE model setup as before



Cellular Automaton Data
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MSE MAPE MAE

Strain 2.28e-4 31.2% 0.0105

Stress 46622.6 19.5% 135.74

Performance

• Without retraining, the fGP network does not 

perform well

• Diagnosis:

• The features used to train the CDIM model are 

always aligned with an axis

• The CDIM produces microstructures that 

resemble single track builds

• In AM, the grains generally exhibit a much 

richer feature set especially with multiple tracks

• Data-driven models cannot be expected to 

capture behavior they have not seen before

• Solution:

• Modify CDIM model to include more features 

mimicking multi-track AM builds

• Use multiple (~10s) CAFE model simulations 

and extract many small RVEs (~50s)

• Retrain fGP with new data set



Summary & Future Work

A functional Gaussian Process network has been developed

• Use continuum diffuse interface model to generate RVEs

• ScanIP to segment and mesh RVEs automatically

• Grain size and shape dependent crystal plasticity model to simulate RVE mechanical behavior

• Train a network of fGPs to predict mechanical behavior

fGP network accurately predicts mechanical behavior from microstructure

• Given a set of microstructural features the fGP can achieve sub-10% error rates

• The network can scale up to large microstructures that may be too costly for CPFE models

Continuing and future work

• Generate new training data from CAFE model and retrain model

• Test prediction on new RVEs

• Synthetically generated and physically generated (phase field, CA, EBSD, etc.)

• Utilize Bayesian methods

• Propagate uncertainty through the fGP network

• Sample the model to determine desirable and undesirable features

• Link fGP network to process-structure models for full PSP linkages in realtime
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Questions?

This work was supported by the Office of Naval Research (ONR) through the 

Naval Research Lab Basic Research Program and the Department of Defense 

(DoD) High Performance Computing Modernization Program (HPCMP) using the 

Air Force Research Laboratory (AFRL) Major Shared Resource Center (MSRC) 

under project 416, subproject 231. 
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Classical Crystal Plasticity

Dislocation nucleation and motion produce plasticity

• Shear strength of a slip system

• Strain hardening rule

• Flow rule and cumulative shear flow strain

g α (r, t) = τ0∞ + න
0

𝑡

ሶg α (r, t′) dt′

ሶg α (r, t) = ෍
(β)

hαβ γ ሶγ β

ሶγ α = ሶγ α τ α , g α

γ = ෍
α

න
0

t

ሶγ α dt

Initial Strain Hardening Modulus, 
h0∞

Stress

Strain

Yield Strength, τ0∞

Saturated Strength, τs

g(α)

γ

Strain Hardening Modulus, hαβ
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Size-Dependent Crystal Plasticity

Higher resistance to dislocation nucleation and motion near the grain boundary

• Extending the crystal plasticity framework to capture the resistance to dislocation in the grain 

boundary mantle

• Strength and hardening modulus in the grain boundary region related through shear flow strain

• Introduce an equivalent shear strain flow ෤𝛾𝐺𝐵 for the grain boundary

g α r, t = τ0∞ + 𝑔𝐺𝐵

(𝛼)
𝑟 + ෍

β
න

0

𝑡

hαβ γ ሶγ β dt′

𝑔𝐺𝐵

(𝛼)
𝑟 = ෍

β
න

0

෥𝛾𝐺𝐵(𝑟)

hαβ γ dγ
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Grain Homogenization

• Material point implementation is computationally challenging 

and requires a precise spatial description

• Homogenize the boundary for each grain to achieve an 

equivalent grain volume average effect

෤γ𝐺𝐵 =
𝑉𝐺𝐵׬

෤γ𝐺𝐵 𝑟 dV

𝑉

ሶg α γ, ሶγ α ⟶ ሶg α γ + ෤γ𝐺𝐵, ሶγ α

g α = τ0∞ + 𝑔𝐺𝐵 + න
0

𝑡

ሶg α dt

𝑔𝐺𝐵 =
ℎ0∞

𝑁𝑆𝑆 − 1 𝑞 + 1
𝑁𝑆𝑆

(𝜏𝑠−𝜏0∞)

ℎ0∞
tanh

ℎ0∞ ෤γ𝐺𝐵

𝜏𝑠 − 𝜏0∞

෤𝛾𝐺𝐵 𝑔𝐺𝐵(𝑟)

෤γ𝐺𝐵 𝑔𝐺𝐵
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Grain Constitutive Shape Representation

Map each grain to a simple equivalent domain for 

homogenization 

• Simple spherical representation is sufficient to capture 

size effects

• Ellipsoidal representation is used to capture columnar 

nature of grains

• Fit a general quadric surface to the nodes on the exterior 

of each grain

• LLSQ minimization gives the 10 term polynomial 

coefficients

Homogenized grain boundary mapping

• Arbitrary grain mapped to an ellipsoid with constant 

grain boundary influence region thickness

• Parameterize the grain boundary influence region 

along r

• Allows for integration to be accomplished using 

numerical quadrature techniques

෤γ𝐺𝐵 =
𝑉𝐺𝐵׬

෤γ𝐺𝐵 𝑟 dV

𝑉
=

8

𝑉
෍

𝑖=0

∞

න

0

Τ𝜋 2

න

0

Τ𝜋 2

෤𝛾𝑖 𝜃, 𝜙
𝑅𝑝

𝑖+3
− 𝑅𝑖

𝑖+3

𝑖 + 3
dθ sin 𝜙 dϕ
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Grain Size Effect Validation

Compare with Hansen et al. experiments

• Copper with 125 randomly sized grains

• Grains have a specified average diameter

• Size effect only

• Grains represented as simple spheres

• Linear ෤γ𝐺𝐵 profile

• 𝛿𝐺𝐵 = 0.33𝜇𝑚

• Uniaxial loading rate of 350 MPa/s

• Periodic boundary conditions
𝐷𝑎𝑣𝑒=220 𝜇𝑚

𝐷𝑎𝑣𝑒=33 𝜇𝑚

𝐷𝑎𝑣𝑒=14 𝜇𝑚

Hansen, N., Ralph, B., 1982. The strain and grain size dependence of the flow 

stress of copper. Acta Metall. 30, 411–417. doi:10.1016/0001-6160(82)90221-8
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